
Page 1

Agent technology for
future mobile networks

Jens Hartmann, Wei Song

 Ericsson Eurolab Deutschland GmbH, Ericsson Allee 1, D-52134 Herzogenrath, Germany
E-mail: {eedjhn, eedwso}@eed.ericsson.se

Abstract
This paper describes an implementation of
an agent-based homebanking service for a
mobile network. Agents offer the prospect
for revolutionising the provision of services
in telecommunications networks by allowing
dynamic distribution of service related data
and processing across networks and
terminals. At Ericsson Eurolab, Germany,
an agent-based solution has been
implemented for “services on demand”.1

Keywords: Agent Technology,
CAMELEON, Mobile Agents, Voyager,
Service on Demand, Homebanking, HBCI.

1. Introduction
From the scientific disciplines Artificial
Intelligence (AI), Distributed Systems and
Object Orientation (OO) a new scientific
working field called Agent Technology has
been established. Currently agents are seen
as a key to the issue of service provisioning
within future telecommunication
environments.

The fixed telecommunication networks are
now providing not only voice services but
also more and more data based services,
whereas mobile networks are still intending

(1) This work was partly supported by the
Commission of the European Community (CEC) as
part of the ACTS CAMELEON project (AC341)

to develop into this direction. Compared
with the traditional voice based networks;
future networks need more flexibility to fill
the new purposes. Agents, especially Mobile
Agents (MA) seem to be best suited because
of their characteristics of autonomy,
intelligence, mobility, co-ordination and co-
operation.

Considering provisioning of new,
sophisticated services by a network operator
or service provider, the services should be
provided in a more direct and flexible way.
A user should have the opportunity to access
these services anytime and anywhere,
independent of the terminal and network
technology.

Using agents, services can be easily
subscribed, downloaded or migrated to the
user’s end device. The user needs only to
subscribe a certain type or version of agent,
who realises the user’s preferred “look and
feel”. Thus, this new service-provisioning
paradigm can be identified not only as
‘service on demands’, but also as ‘look and
feel on demands’.

Using an agent-enabled system, agents can
represent almost any party of the system.
Some old application processing scenarios
can be executed in a more effective and
flexible way. In particular, this is valid for
new applications in the well-promising area
of electronic commerce, because in the past
it was only tried to realise these applications

Page 2

in a transaction based manner. With the help
of agents, it is possible to build these
applications easily in an asynchronous way.

The work described in this paper has been
undertaken in the framework of the
CAMELEON project [CAM98], which
develop and trial service roaming applying
Agent Technology in a mobile network
environment using the Virtual Home
Environment (VHE) as a test case.

2. Mobile
Telecommunication
Networks
The success of the 2nd generation mobile
communication standard GSM [Mou92]
relies, among other things, on the possibility
to roam between networks – and thus
between countries – by using a single
subscription. This means that the subscriber
is reachable using a single number and
receives a single bill from his/her home
service provider. The three most important
topics for future mobile users will therefore
be the same as they are today for GSM users:

• Easy handling of the desired
telecommunication services, including
the opportunity to customise the ‘look
and feel’ of services and get ‘services
on-demand’

• Global availability and consistent
performance of telecommunication
services

• Understandable billing with a single
point of contact

However, the future telecommunications
world will not be homogeneous, and
therefore these goals cannot be achieved
easily. This has been identified by the
telecommunications standardization bodies
ITU and ETSI, and measures have been

taken to allowing ‘service roaming’,
sometimes referred as service portability.
This concept shall be realised by the VHE,
which shall enable a visited network to
obtain information about the user’s Service
Provider (SP) during the registration
procedure and other information such as the
user’s personalised service profile and the
identification of service capabilities needed
for the execution of SP specific services.
Although the physical realisation of a service
may differ from one network to another, the
VHE concept enables the user to access and
to use the service in the same way on any
network. The VHE is currently being
standardised in ETSI SMG 1 and ITU SG 2
for the use in 3rd generation mobile networks
such as the Universal Mobile
Telecommunication Network (UMTS) and
International Mobile Telecommunications
2000 (IMT-2000) [ITU98].

For these third generation networks
frequency spectrum has already been
allocated in the 2 GHz frequency band. The
UMTS air interface will utilise W-CDMA
for the wide area environment with a
proposed TD/CDMA structure for the
unpaired banks. In implementing this
solution the ETSI representatives follow the
specification of UMTS with the objective to
provide:

• low-cost terminals

• harmonisation with GSM

• FDD/TDD dual-mode operation
terminals

However, the global standardisation work
being conducted by public authorities and
the industry is ongoing.

Page 3

3. Agent Technology
Although Agent Technology is currently
ubiquitous in the telecommunication
research domain, there is no commonly
agreed definition of what an agent is. We
propose to use the following definition,
which has been developed within the
CAMELEON project [CAM98]:

An agent is a piece of software, which is able
to perform a specific predefined task
autonomously (on behalf of a user or an
application). An agent is either stationary
providing the necessary intelligence, or
mobile so that it can move between
distributed (possibly incompatible) systems to
access remote resources or even meet other
agents (or activate them). All agents have
capabilities to co-ordinate, communicate
and co-operate with the system or with other
agents.

From this definition the most important
attributes of an agent can be derived:

• Autonomy; similar to an agent in the
human world, a software agent tries to
fulfil the required tasks autonomously
according to his rights. The agent
knows his mission, and how to
accomplish it. There is no need for a
permanent connection with the
principal;

• Intelligence is needed, if the agent
should achieve his goals sensible.
Moreover, the agent could be able to
plan (re-active), and learn (adaptive)
from the things he is doing;

• Mobility means the capability of an
agent to move through a network.
Before the agent start to migrate, the
program execution should be stopped,
and the program code and data should
be packed up. After migration, the
agent should be able to continue the

program execution from the last
breakpoint.

• Distribution should a priori cause no
problem to agent. Agent should know
how to interact with physical and
logical distributed systems.
Furthermore, an agent itself could be
called a special kind of a distributed
object.

• Co-ordination; an agent system
should be build up in a way that
mechanisms to avoid conflicts are
available. Moreover, in the case of a
conflict the agent should know how to
handle it. Tasks such as
synchronisation of jobs, consistency
handling, redundancy avoidance and
the addition of controlled redundancy
belong also the group of co-ordination
activities, which should be considered
when implementing an agent,
respectively an agent system.

• Communication plays of course an
important role in the agent domain.
Methods are needed to describe how to
communicate, protocols are necessary
to define who is allowed to
communicate, and an agreement on the
content is essential, if the partners
should understand each other.

• Co-operation mechanisms appear in
the case of problem division, task
sharing, resource problems, result
sharing, and result synthesis.

From this long list of requirements it can be
concluded that there is a need for a
classification scheme of agents. From very a
high level perspective two major types can
be identified [Mag96]:

Mobile Agents, in which the mobility of
code, data and state is the most fundamental
attribute. This allows software entities to

Page 4

roam autonomously through a network and
to perform dedicated tasks at specific
network nodes, thereby taking advantage of
locality;

Intelligent Agents, who are software entities
that are able to perform delegated tasks
based on internal knowledge and reasoning,
where aspects such as inter-agent
communication and negotiation are
fundamental. Usually mobility is not
considered as an issue.

The focus in this work is on Mobile Agents
(MA), which have a shorter history, and are
more oriented towards network and
communication applications. The
combination of MAs and mobile
telecommunication system sounds
promising, because it seems that MAs could
overcome the typical restrictions coming
from mobile networks, such as:

• limited bandwidth

• high bit error rate on the air channel

• bounded coverage

• low processing power of the end-
systems

• simple user interface

Moreover, the application of MA for service
provisioning brings the following
advantages:

• asynchronous communication is
possible

• agents could work without a
permanent network connection

• reduction of network traffic

• very processing power consuming
activities could be performed locally

• the reality could be better modelled
with agents

4. Mobile Agent Systems
Mobile Agent Systems (MAS) for service
provisioning are continuously evolving.
Besides providing a system development
infrastructure the existing platforms support
security, inter-agent communication, agent
transport protocols, remote messaging, etc.
Several platforms are available but most of
these products are in their Beta stages
[CAM98]. Some of the JAVA-based mobile
frameworks available are: (1) Voyager from
Object Space, (2) Aglets Workbench from
IBM, (3) Concordia from Mitsubishi
Electric, (4) Agent TCL from Dartmouth
College, (5) Odyssey from General Magic,
(5) CyberAgent from FTP Software, (6)
Grasshopper from IKV, and (7) JIAC from
the Technical University of Berlin.

We have decided to build our application on
top of the Voyager platform, because several
tests have shown that Voyager has the best
system performance concerning agent
transmission. Voyager is the ObjectSpace
product designed to help developers produce
high-impact distributed systems quickly
[Obj97]. Voyager is now in a phase of
Version 2.0. Voyager is implemented in
programming language Java [Jav98] and is
designed to use the Java language object
model. Voyager allows its user to use regular
message syntax to construct remote objects,
send them messages, and move them
between programs and objects.

The root of the Voyager product line is the
ObjectSpace Voyager Core Technology. It
contains the core features and architecture of
the platform, including a full-featured,
intuitive object request broker (ORB) with
support for mobile objects and autonomous
agents. Also in the core package are services
for persistence, scalable group
communication and basic directory services
included.

Page 5

The key aspects of this framework are as
follows:

• Voyager is 100% Java. Voyager
applications can be written once and
run on a platform supporting Java 1.1
or later. Voyager can remotely
construct and communication with
Java classes, even third-party
libraries without accessing the source
code.

• Objects can be created remotely
using the regular Java construction
syntax, and meanwhile a reference of
this object will be keep locally. Static
methods can be executed remotely,
and remote exceptions are
automatically forwarded to caller. A
remote-enabled serializable object
can be move through the network,
even if it is receiving messages.

• Objects can exchange messages
locally and remotely using regular
Java message syntax. If an object is
transported, the messages sent to it
will be automatically forwarded to its
new location. Voyager supports
synchronous messages, one-way
messages, future messages, one-way
multicast messages and selective
multicast messages.

• Using Voyager it is relatively easy to
prepare a class for remote
programming. With a single Voyager
command an object can be enabled
remotely.

• A persistent object has a backup copy
in a database, so that it can be
automatically recovered, if its
program is unexpectedly terminated
or if it is flushed from the memory to
save working space.

• Voyager supports JavaBean.

5. Agent-based
Homebanking
Today, most banking service users have to
run special software from their bank to
access the services offered by the bank. This
leads to the fact that the user has various
software packets installed on different
computers, which he also has to maintain.
Moreover, the user does not have an
identical ‘look and feel’ of the service,
because the user profile and configurations
are stored separately on each machine. To
integrate the homebanking service directly in
a telecommunication network could change
this situation, because than the homebanking
service provider acts as a universal bridge
interface between the user and his banks, see
Figure 1. Every subscriber will get his
unique user profile and an identical ‘look
and feel’ is also supported.

HBCI

User Homebanking
server

Transaction
servers in banks

H
B

C
I

Figure 1: Agent-based homebanking
scenario

The transaction servers, who could process
the transaction requests from their clients,
are running in the domain of a bank. A
homebanking server is a homebanking client
from the view of a bank and a homebanking
service provider from the view of a user. The
homebanking server will register itself to a
naming service at beginning, so that every
Terminal Agent could find it. A user could
then subscribe the homebanking service by
downloading and starting the homebanking
client, i.e. the Homebanking Terminal Agent,

Page 6

using his Terminal Agent. After starting the
Homebanking Terminal Agent, the user has
the possibility to create Homebanking
Agents, give them specific tasks to process
and launch them. After he has been started
the Homebanking Agent, the agent will move
its tasks to server, process them locally and
bring the results back when the user is
online. As a GSM connection is limited by
its narrow bandwidth, a main purpose of this
design is to optimise the network usage
maximally. Using a Homebanking Agent, the
communication between the Terminal Agent
and the server is not transaction-based but
asynchronous. In every host, the Terminal
Agent has to be downloaded only once and
can than be reused at the next time. The
network connection is necessary mostly to
transport Homebanking Agents.

The homebanking server communicates with
transaction servers in banks over the
Homebanking Computer Interface (HBCI)
protocol [HBC97, Kel98], that has been
recently standardised by German Central
Finance Committee (ZKA). HBCI defines
the communication between intelligent
customer systems and the corresponding
computing centres for the exchange of
homebanking transactions. As this protocol
has been submitted to the European
Committee for Banking Standards (ECBS) it
looks feasible, that most banks in Europe
will support this protocol in the near future.

Generally, an HBCI message consists of
message header and trailer, signature header
and trailer, and a number of message
segments indicating the banking part of
several business transactions. Optionally
there exist a ciphering header for the
ciphering of data and eventually additional
signature headers and trailers for multiple
signatures. In the first versions, many of the
classic business transactions have been
defined in HBCI, e.g. balance inquiry, sales

statistics, domestic and foreign transfers,
single and collective credit/debit note, and
exchange rates. More transactions will be
added in the next versions, e.g. loading of
the German cash card GeldKarte [Kel98].

However, the main purpose of the overall
service is to benefits from the various
advantages of agent characteristics, see
Chapter 3. Therefore, the following classes
of agent types have been identified:

Terminal Agents
Terminal Agents represent the interface
between a user and the system. The user can
contact a general Terminal Agent in order to
enter or leave the system or to start and
shutdown a service. A service specific
terminal agent provides service specific
interactions. Depending on different types of
terminal devices, a Terminal Agent can have
a graphic or text-based user interface.

User Agents
These agents content the full user profile of a
user, and represent the preferences and
activities of the user. It is also responsible
for primitive and advanced migration and
consistency of user preference data.

Management Agents
This type of agents manages the system
resources. They can be realized as a set of
agents, in which every agent or agent group
is responsible for one or more subtasks. For
example, user access controlling agents are
responsible for access controlling of some
type or the whole resources.

Communication Agents
These agents are responsible for the
management of communication with
external components.

Page 7

Service Agents
A Service Agent represents a service to be
provided, which can be used by a user or a
component. Because the realization of
services differs from one to another, Service
Agents can be a whole service or only a part.
The Homebanking Agent is an example of a
Service Agent.

Tool Agents
This category of agents realizes a set of tools
for common purposes. For example, an agent
wants to inform his owner some messages,
but it does not know if his owner is now
online. It just starts a Report Agent, who will
try to find the user and bring him these
messages. Applications might be strongly
simplified through the usage of such agents.

The general sequence of an agent-based
HBCI transaction is shown in

Figure 2. In general, if the Homebanking
Terminal Agent is already available on the
end-system the user is currently using, first

the user has to create a least one
Homebanking Agent. Then the user has to
define one or more tasks and delegate them
to one specific Homebanking Agent. For the
different kinds of tasks, which should be
supported by the Homebanking Agent altered
solutions for security handling and data
storing were considered.

When talking about security handling, you
should have in mind that HBCI supports
different kind of security schemes [HBC97].
For example, there are two ways to store the
different asymmetric key pairs needed for the
HBCI-based communication between the
Homebanking service in the domain C and
the bank server in domain E, see also

Figure 2. The first solution is based on the
Data Encryption Standard (DES). Here, the
keys are stored on the SmartCard, which also
performs the calculation of the cryptographic

functions. For the second solution uses the
asymmetric algorithm of Rivest-Shamir-
Adleman (RSA). In this case the keys are
normally stored on an ordinary storage
media, such as a diskette or a harddisk.

User
HBCI

Server
HBCI
Client

A C

create agent

Agent in A

create
define task

add task
launch agent

launch

Agent in C

move to C

HBCI
Mechanism

begin trans.
create

do trans.

end trans.
results

destroy

Server in
Bank

move to Aresults
results

finished

transactions
results

E

Figure 2: Message Sequence Chart of an FFS transaction

Page 8

6. Conclusion
Within the framework of the research project
CAMELEON, which is founded by the
European Union, we have implemented an
agent-based homebanking service in the
commercial mobile agent platform Voyager
from ObjectSpace. This service, which has
been introduced briefly, allows triggering a
huge set of banking transaction over the air-
link with the help of Mobile Agents. The
main processing of the service is undertaken
locally at a bridging homebanking server,
which performs the protocol specific
communication with bank server based on a
new German banking standard called HBCI.
A mobile user can access the homebanking
service by simply downloading and starting a
Homebanking Terminal Agent using his
Terminal Agent, sitting on top of the Java-
based Voyager platform on any system with
a JAVA Virtual Machine.

This homebanking service is a good example
how to use agent for enhanced service
provisioning. It proves that the application of
Agent Technology in future
telecommunication networks for end-user
services is reasonable. In particular the
service shows, that two important challenges
for future mobile networks, i.e. the
customisation of the ‘look and feel’ of
services and the download of ‘services on-
demand’, could be realised easily with the
help of Agent Technology. In the near future
it should be also investigated, if agents also
bring some benefits for to
telecommunication network and
management services.

7. References
[CAM98] CAMELEON Consortium. An

Open Communication Environ-
ment Using Agent Technologies,
ACTS 341 – Technical Annex
Part B, March 1998.

[HBC97] Bundesverband deutscher
Banken. HBCI – Schnittstellen-
spezifikation. Version 2.0 (in
German), July 1997.

[ITU98] International Telecommunication
Union. IMT-2000.
http://www.itu.int/imt/

[Jav98] Sun Microsystems. JAVA.
http://java.sun.com/

[Kel98] Keller R., Zavagli G., Hartmann
J., Williams F. Mobile Electronic
Commerce: GeldKarte Loading
Functionality in Wireless Wallets.
International IFIP/GI Working
Conference: Trends in Electronic
Commerce, Hamburg, June 1998.

[Mag96] Magedanz T., Popescu-Zeletin R.
Towards “Intelligence on
Demand” - On the Impacts of
Intelligent Agents on IN. 4th
International Conference on
Intelligence in Networks,
Bordeaux, France, November
1996.

[Mou92] Mouly M., Pautet M.-B. The
GSM System for Mobile
Communications. Published by
the authors, 1992.

[Obj97] ObjectSpace. Voyager Core
Technology User Guide. Version
2.0 Beta 1, 1997.

